Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Public Health ; 9: 683855, 2021.
Article in English | MEDLINE | ID: covidwho-1247958

ABSTRACT

Background: The outbreak of COVID-19 in 2019 has rapidly swept the world, causing irreparable loss to human beings. The pandemic has shown that there is still a delay in the early response to disease outbreaks and needs a method for unknown disease outbreak detection. The study's objective is to establish a new medical knowledge representation and reasoning model, and use the model to explore the feasibility of unknown disease outbreak detection. Methods: The study defined abnormal values with diagnostic significances from clinical data as the Features, and defined the Features as the antecedents of inference rules to match with knowledge bases, achieved in detecting known or emerging infectious disease outbreaks. Meanwhile, the study built a syndromic surveillance base to capture the target cases' Features to improve the reliability and fault-tolerant ability of the system. Results: The study combined the method with Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and early COVID-19 outbreaks as empirical studies. The results showed that with suitable surveillance guidelines, the method proposed in this study was capable to detect outbreaks of SARS, MERS, and early COVID-19 pandemics. The quick matching accuracies of confirmed infection cases were 89.1, 26.3-98%, and 82%, and the syndromic surveillance base would capture the Features of the remaining cases to ensure the overall detection accuracies. Based on the early COVID-19 data in Wuhan, this study estimated that the median time of the early COVID-19 cases from illness onset to local authorities' responses could be reduced to 7.0-10.0 days. Conclusions: This study offers a new solution to transfer traditional medical knowledge into structured data and form diagnosis rules, enables the representation of doctors' logistic thinking and the knowledge transmission among different users. The results of empirical studies demonstrate that by constantly inputting medical knowledge into the system, the proposed method will be capable to detect unknown diseases from existing ones and perform an early response to the initial outbreaks.


Subject(s)
COVID-19 , Disease Outbreaks , Humans , Knowledge Bases , Pilot Projects , Reproducibility of Results , SARS-CoV-2
2.
mSphere ; 6(2)2021 04 21.
Article in English | MEDLINE | ID: covidwho-1197234

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) was first reported in Wuhan, China, in December 2019. To investigate the prevalence of COVID-19 in Wuhan, we conducted serologic tests on 35,326 individuals from four different communities to estimate cumulative incidence of infection. Our results showed that 1,332 individuals (3.77%) showed positive COVID-19 antibody (either IgM or IgG). Males had a lower positivity rate than females (3.02% versus 4.52%). The antibody positivity rates showed a clear trend of increase according to patients' ages and varied among different communities. The results indicate that public health interventions may play important roles in the control of COVID-19.IMPORTANCE Coronavirus disease 2019 (COVID-19) was first detected in December 2019 in Wuhan, China. Afterwards, a number of public health interventions were implemented, including lock-down, face mask ordinances, and social distancing. Studies that rely on viral RNA testing of symptomatic patients have shown that these multifaceted interventions contributed to the control of the COVID-19 outbreak in Wuhan and delayed the epidemic's progression. However, these estimates of confirmed cases may miss large numbers of asymptomatic patients and recovered symptomatic patients who were not tested. To investigate the prevalence of COVID-19 in Wuhan, we conducted serologic tests on 35,326 individuals to estimate the cumulative incidence of infection. The results suggest that public health interventions may play important roles in the control of COVID-19.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , COVID-19/immunology , COVID-19 Serological Testing , Child , Child, Preschool , China/epidemiology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Incidence , Male , Middle Aged , Pandemics , SARS-CoV-2/immunology , Seroepidemiologic Studies , Time Factors , Young Adult
3.
Liver International ; 41(4):i, 2021.
Article in English | ProQuest Central | ID: covidwho-1138203

ABSTRACT

The cover image is based on the Original Article Clinical characteristics of COVID‐19 patients with hepatitis B virus infection — a retrospective study by Rui Liu et al., https://doi.org/10.1111/liv.14774.

4.
Clin Transl Med ; 11(2): e297, 2021 02.
Article in English | MEDLINE | ID: covidwho-1049592

ABSTRACT

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in December 2019 and has subsequently spread worldwide. Currently, there is no effective method to cure COVID-19. Mesenchymal stromal cells (MSCs) may be able to effectively treat COVID-19, especially for severe and critical patients. Menstrual blood-derived MSCs have recently received much attention due to their superior proliferation ability and their lack of ethical problems. Forty-four patients were enrolled from January to April 2020 in a multicenter, open-label, nonrandomized, parallel-controlled exploratory trial. Twenty-six patients received allogeneic, menstrual blood-derived MSC therapy, and concomitant medications (experimental group), and 18 patients received only concomitant medications (control group). The experimental group was treated with three infusions totaling 9 × 107 MSCs, one infusion every other day. Primary and secondary endpoints related to safety and efficacy were assessed at various time points during the 1-month period following MSC infusion. Safety was measured using the frequency of treatment-related adverse events (AEs). Patients in the MSC group showed significantly lower mortality (7.69% died in the experimental group vs 33.33% in the control group; P = .048). There was a significant improvement in dyspnea while undergoing MSC infusion on days 1, 3, and 5. Additionally, SpO2 was significantly improved following MSC infusion, and chest imaging results were improved in the experimental group in the first month after MSC infusion. The incidence of most AEs did not differ between the groups. MSC-based therapy may serve as a promising alternative method for treating severe and critical COVID-19.


Subject(s)
COVID-19/therapy , Menstruation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , SARS-CoV-2/metabolism , Adolescent , Adult , Aged , Allografts , COVID-19/blood , COVID-19/mortality , Critical Illness , Disease-Free Survival , Female , Humans , Male , Middle Aged , Severity of Illness Index , Survival Rate
5.
Liver Int ; 41(4): 720-730, 2021 04.
Article in English | MEDLINE | ID: covidwho-991633

ABSTRACT

BACKGROUND & AIMS: The outbreak of coronavirus disease 2019 (COVID-19) has been declared a pandemic. Although COVID-19 is caused by infection in the respiratory tract, extrapulmonary manifestations including dysregulation of the immune system and hepatic injury have been observed. Given the high prevalence of hepatitis B virus (HBV) infection in China, we sought to study the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and HBV coinfection in patients. METHODS: Blood samples of 50 SARS-CoV-2 and HBV coinfected patients, 56 SARS-CoV-2 mono-infected patients, 57 HBeAg-negative chronic HBV patient controls and 57 healthy controls admitted to Renmin Hospital of Wuhan University were collected in this study. Complete blood count and serum biochemistry panels including markers indicative of liver functions were performed. Cytokines including IFN-γ, TNF-α, IL-2, IL-4, IL-6 and IL-10 were evaluated. T cell, B cell and NK cell counts were measured using flow cytometry. RESULTS: SARS-CoV-2 and HBV coinfection did not significantly affect the outcome of the COVID-19. However, at the onset of COVID-19, SARS-CoV-2 and HBV coinfected patients showed more severe monocytopenia and thrombocytopenia as well as more disturbed hepatic function in albumin production and lipid metabolism. Most of the disarrangement could be reversed after recovery from COVID-19. CONCLUSIONS: While chronic HBV infection did not predispose COVID-19 patients to more severe outcomes, our data suggest SARS-CoV-2 and HBV coinfection poses a higher extent of dysregulation of host functions at the onset of COVID-19. Thus, caution needs to be taken with the management of SARS-CoV-2 and HBV coinfected patients.


Subject(s)
COVID-19/complications , Hepatitis B, Chronic/complications , Adult , COVID-19/blood , COVID-19/immunology , Coinfection , Erythrocyte Count , Female , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/immunology , Humans , Liver Function Tests , Male , Platelet Count , Retrospective Studies , SARS-CoV-2/immunology , Young Adult
6.
Artif Organs ; 45(7): 762-769, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-978684

ABSTRACT

Our aim was to investigate the effect of artificial liver blood purification treatment on the survival of severe/critical patients with coronavirus disease 2019 (COVID-19). A total of 101 severe and critical patients with coronavirus SARS-CoV-2 infection were enrolled in this open, case-control, multicenter, prospective study. According to the patients' and their families' willingness, they were divided into two groups. One was named the treatment group, in which the patients received artificial liver therapy plus comprehensive treatment (n = 50), while the other was named the control group, in which the patients received only comprehensive treatment (n = 51). Clinical data and laboratory examinations, as well as the 28-day mortality rate, were collected and analyzed. Baseline data comparisons on average age, sex, pre-treatment morbidity, initial symptoms, vital signs, pneumonia severity index score, blood routine examination and biochemistry indices etc. showed no difference between the two groups. Cytokine storm was detected, with a significant increase of serum interleukin-6 (IL-6) level. The serum IL-6 level decreased from 119.94 to 20.49 pg/mL in the treatment group and increased from 40.42 to 50.81 pg/mL in the control group (P < .05), indicating that artificial liver therapy significantly decreased serum IL-6. The median duration of viral nucleic acid persistence was 19 days in the treatment group (ranging from 6 to 67 days) and 17 days in the control group (ranging from 3 to 68 days), no significant difference was observed (P = .36). As of 28-day follow-up,17 patients in the treatment group experienced a median weaning time of 24 days, while 11 patients in the control group experienced a median weaning time of 35 days, with no significant difference between the two groups (P = .33). The 28-day mortality rates were 16% (8/50) in the treatment group and 50.98% (26/51) in the control group, with a significant difference (z = 3.70, P < .001). Cytokine storm is a key factor in the intensification of COVID-19 pneumonia. The artificial liver therapy blocks the cytokine storm by clearing inflammatory mediators, thus preventing severe cases from progressing to critically ill stages and markedly reducing short-term mortality.


Subject(s)
COVID-19/therapy , Cytokine Release Syndrome/prevention & control , Liver, Artificial , Plasma Exchange/instrumentation , Aged , Biomarkers/blood , COVID-19/blood , COVID-19/mortality , COVID-19/virology , Case-Control Studies , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Cytokines/blood , Female , Hospital Mortality , Host-Pathogen Interactions , Humans , Male , Middle Aged , Plasma Exchange/adverse effects , Plasma Exchange/mortality , Prospective Studies , SARS-CoV-2/pathogenicity , Severity of Illness Index , Time Factors , Treatment Outcome , Viral Load
7.
mSphere ; 5(5)2020 10 07.
Article in English | MEDLINE | ID: covidwho-841943

ABSTRACT

Since the outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China, it has rapidly spread around the world. Persons with asymptomatic disease exhibit viral shedding, resulting in transmission, which presents disease control challenges. However, the clinical characteristics of these asymptomatic individuals remain elusive. We collected samples of 25 asymptomatic and 27 symptomatic COVID-19 patients. Viral titers of throat swabs were determined by quantitative reverse transcription-PCR (qRT-PCR). COVID-19 IgG and IgM were examined. Complete blood counts were determined, and serum biochemistry panels were performed. Cytokines, including gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), interleukin 2 (IL-2), IL-4, IL-6, and IL-10 were evaluated. T cell, B cell, and NK cell counts were measured using flow cytometry. Although similar viral loads were detected, asymptomatic patients had significantly faster virus turnover than symptomatic patients. Additionally, asymptomatic patients had higher counts of lymphocytes, T cells, B cells, and NK cells. While liver damage was observed in symptomatic patients, as indicated by elevated liver enzymes and decreased liver-synthesized proteins in the blood, asymptomatic patients showed normal liver measurements. Lactate dehydrogenase, a COVID-19 risk factor, was significantly lower in asymptomatic patients. These results suggest that asymptomatic COVID-19 patients had normal clinical indicators and faster viral clearance than symptomatic patients. Lymphocytes may play a role in their asymptomatic phenotype. Since asymptomatic patients may be a greater risk of virus transmission than symptomatic patients, public health interventions and a broader range of testing may be necessary for the control of COVID-19.IMPORTANCE Asymptomatic transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a potential problem for pandemic control through public health strategies. Our results demonstrate that asymptomatic COVID-19 patients have better outcomes than symptomatic patients. This may have been due to more active cellular immune responses and normal liver function. Since asymptomatic patients have no clinical symptoms which can easily prevent timely diagnosis and treatment, they may cause a greater risk of virus transmission than symptomatic patients, which poses a major challenge to infection control. Evidence suggests that nonpharmaceutical public health interventions, like social distancing and face mask ordinances, play important roles in the control of COVID-19. Looking forward, it may be necessary to proceed cautiously while reopening businesses in areas of epidemicity to prevent potential waves of COVID-19 in the future.


Subject(s)
Asymptomatic Infections , Betacoronavirus , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Adult , Betacoronavirus/isolation & purification , Biomarkers/blood , COVID-19 , COVID-19 Testing , Case-Control Studies , China , Clinical Laboratory Techniques , Coronavirus Infections/blood , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Female , Humans , Male , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/blood , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Retrospective Studies , SARS-CoV-2 , Virus Shedding
8.
Front Med ; 14(5): 664-673, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-696783

ABSTRACT

The Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 was identified in December 2019. The symptoms include fever, cough, dyspnea, early symptom of sputum, and acute respiratory distress syndrome (ARDS). Mesenchymal stem cell (MSC) therapy is the immediate treatment used for patients with severe cases of COVID-19. Herein, we describe two confirmed cases of COVID-19 in Wuhan to explore the role of MSC in the treatment of COVID-19. MSC transplantation increases the immune indicators (including CD4 and lymphocytes) and decreases the inflammation indicators (interleukin-6 and C-reactive protein). High-flow nasal cannula can be used as an initial support strategy for patients with ARDS. With MSC transplantation, the fraction of inspired O2 (FiO2) of the two patients gradually decreased while the oxygen saturation (SaO2) and partial pressure of oxygen (PO2) improved. Additionally, the patients' chest computed tomography showed that bilateral lung exudate lesions were adsorbed after MSC infusion. Results indicated that MSC transplantation provides clinical data on the treatment of COVID-19 and may serve as an alternative method for treating COVID-19, particularly in patients with ARDS.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections , Critical Care/methods , Mesenchymal Stem Cell Transplantation/methods , Pandemics , Pneumonia, Viral , Adult , Aged , Blood Cells/physiology , Blood Coagulation Tests/methods , COVID-19 , COVID-19 Testing , China , Clinical Laboratory Techniques/methods , Combined Modality Therapy , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Female , Humans , Male , Monitoring, Immunologic/methods , Oximetry/methods , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Preliminary Data , SARS-CoV-2 , Severity of Illness Index , Symptom Assessment/methods , Treatment Outcome , COVID-19 Drug Treatment
9.
Emerg Microbes Infect ; 9(1): 1123-1130, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-457402

ABSTRACT

Since the outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China, it has rapidly spread across many other countries. While the majority of patients were considered mild, critically ill patients involving respiratory failure and multiple organ dysfunction syndrome are not uncommon, which could result death. We hypothesized that cytokine storm is associated with severe outcome. We enrolled 102 COVID-19 patients who were admitted to Renmin Hospital (Wuhan, China). All patients were classified into moderate, severe and critical groups according to their symptoms. 45 control samples of healthy volunteers were also included. Inflammatory cytokines and C-Reactive Protein (CRP) profiles of serum samples were analyzed by specific immunoassays. Results showed that COVID-19 patients have higher serum level of cytokines (TNF-α, IFN-γ, IL-2, IL-4, IL-6 and IL-10) and CRP than control individuals. Within COVID-19 patients, serum IL-6 and IL-10 levels are significantly higher in critical group (n = 17) than in moderate (n = 42) and severe (n = 43) group. The levels of IL-10 is positively correlated with CRP amount (r = 0.41, P < 0.01). Using univariate logistic regression analysis, IL-6 and IL-10 are found to be predictive of disease severity and receiver operating curve analysis could further confirm this result (AUC = 0.841, 0.822 respectively). Our result indicated higher levels of cytokine storm is associated with more severe disease development. Among them, IL-6 and IL-10 can be used as predictors for fast diagnosis of patients with higher risk of disease deterioration. Given the high levels of cytokines induced by SARS-CoV-2, treatment to reduce inflammation-related lung damage is critical.


Subject(s)
Coronavirus Infections/diagnosis , Interleukin-10/blood , Interleukin-6/blood , Pneumonia, Viral/diagnosis , Betacoronavirus , Biomarkers/blood , C-Reactive Protein/analysis , COVID-19 , China , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Critical Illness , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Cytokines/blood , Humans , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL